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Numerical experiments on Yang-Lee zeros 
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Abstract. It is argued that since any real space renormalisation R is a transformation 
under which the partition function is invariant, those R which are based upon various real 
space approximation schemes can in principle be extended into the complex field of the 
parameter space. In this extension the Julia set of R (now extended to include R which 
are algebraic) is an approximation to the locus of the Yang-Lee zeros. Finite-size scaling 
using Onsager’s solution of the two-dimensional Ising model is used to construct R which 
are highly accurate in real temperatures in the critical region; these are extended into the 
complex temperature plane and results are displayed for both the anisotropic and isotropic 
cases. 

1. Introduction 

To obtain the limiting distribution of the partition function zeros (Yang and Lee 
1952a, b) in the complex temperature plane for model problems in statistical mechanics 
is well known to be a difficult problem. Very few exact results are known (Fisher 1965, 
Bruscamp and Kunz 1974, Wood 1985a) and there has been a renewed interest in 
approximate methods to locate the locus of the Yang-Lee zeros. Until recently the 
location of a discrete set of zeros of the partition functions of small finite lattice sections 
seems to have been the only computational method adopted (examples are Pearson 
1982, Martin 1983, Ono et a1 1967, 1968). The nature of this problem for hierarchical 
lattices is, however, very much simpler since the Yang-Lee zeros are simply the Julia 
sets of rational complex maps which are known exactly. For such lattice types the 
Yang-Lee zeros can be computed on a sequence of inverse iteration of a particular 
rational map, which is the renormalisation transformation of a given model (Derrida 
et a1 1983, Itzykson and Luck 1983). 

An interesting attempt to extend a ‘real’ space renormalisation method into the 
complex temperature plane has recently been proposed by Derrida and Flyvbjerg 
(1985) and applied to the two-dimensional Ising model. These authors introduce a 
renormalisation transformation R based upon a finite-size scaling argument using three 
finite lattices; R is viewed as a ‘good’ approximation to a ‘true’ R and again the Julia 
set of this transformation is computed. A proposal for a different mathematical 
approach to the problem has recently been outlined by one of us (Wood 1985b), in 
which the whole limiting distribution for at least a semi-infinite system can be found 
using the eigenvalues of finite transfer matrices; the details of this approach will be 
the subject of a further publication. 

The purpose of the present publication is to present the results of some numerical 
experiments on the Yang-Lee zeros of the two-dimensional Ising model. In one part 
we adopt a similar viewpoint to that of Derrida and Flyvbjerg (1985) in the extension 
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of real space renormalisation transformations into the complex field; for the other part 
we adopt a naive approach which does not involve a renormalisation transformation 
and uses only one semi-infinite lattice system. Within each of these schemes results 
are displayed for both the isotropic and anisotropic models. 

2. Fixed point sets and large rescaling 

In the case of a hierarchical lattice (Derrida et a1 1983) of n ‘steps’, real space 
renormalisation can be given an exact representation whereby, if Z,,( z) is the partition 
function of some given one-parameter model Hamiltonian and z is any convenient 
temperature variable, then a recursive sequence of the form 

(1) ( z 1 = G ( z ) Z n  - 1 ( z ’1 
can in principle be constructed exactly. Here G(z) is a simple analytic factor and z’  
is the renormalised temperature variable obtained under a known renormalisation 
transformation 

z ’= R ( z ) .  (2) 

Thus the zeros of 2, are the pre-images of the set of zeros of Z n - ]  under R. In this 
way Derrida et af (1983) have computed the Julia sets of ( 2 )  for examples of the scalar 
q-state Potts models where R is typically a simple rational map. Although the fact 
that for hierarchical lattices ( 2 )  is an exact renormalisation is an enabling feature of 
the work of Derrida et al, the fundamental property of a real space renormalisation 
R in an application to the Yang-Lee zeros is the property that a true renormalisation 
must keep the partition function invariant, namely 

z, ( E )  = Z,!( xl) ( n ’ <  n )  (3a)  

z’= R ( z )  (3b) 

where (X’) is the renormalised reduced Hamiltonian. Thus the Yang-Lee zeros will 
be the Julia sets of R which are now extended to included maps which are not rational. 
A simple example of this on a non-hierarchical lattice is the one-dimensional Ising 
model in a magnetic field; following Nelson and Fisher (1975) the model has a 
two-variable parameter space x = e-4K, y = e-2L ( K  = J /  kT, L = H /  k T )  in which (3b) 
is given exactly by 

x’ = x( 1 + y)’/(x + y ) (  1 + xy) (4a 1 
Y’ = A x  + y ) l ( l  +XY).  (46) 

If we extend ( 4 a )  and (4b) into the complex y plane, in which the Yang-Lee zeros 
lie on the unit circle (Yang and Lee 1952b), we readily verify that these equations 
restrict y’ to move on this circle and x‘ to be real. Thus if y = eid and x real: 

4x cos2 44 
x 2 + 2 x c o s d + 1 ‘  

x’ = 
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In a recent letter Derrida and Flyvbjerg (1985) have proposed the construction of 
an approximate R using the partition functions of three finite lattices and argue that 
since these are all polynomials in form the real axis plays no preferred role. Thus an 
extension of ( 3 b )  into the complex field is acceptable. While we indeed agree with 
this argument there seems to the present authors absolutely no reason why it should 
be restricted to approximations to R in which ( 3 b )  becomes implicit and composed 
only of rational functions (the map itself will of course not be rational). Indeed for 
any one of the many ways in which approximations to ( 3 a )  and ( 3 b )  can be formed 
(for a review see Burkhardt and van Leeuven 1982), the approximation represents an 
attempt to find an approximation to R, R, say, under which 2, is invariant. Hence 
R, is by construction an approximation to an 'object' which maps zeros into zeros 
and thus it seems quite proper to view the extended Julia set of R,  as the approximation 
to the Yang-Lee zeros within the particular approximation scheme of R, .  

Renormalisation transformations R which are not simple rational maps but are 
expressed implicitly in terms of either rational or algebraic functions will typically 
present quite formidable computational problems in constructing sequences of inverse 
iterates and the Julia set will be extremely difficult to obtain. If, however, we consider 
an exact R with, say, a large rescaling factor b we can view this as physically equivalent 
to a sequence of m successive applications of a renormalisation R' with a smaller 
rescaling factor b' where 

b' ( 6 )  R = (R ' ) (" '  b'/" = 

and correspondingly for an approximation scheme 

R,  -- (Rh)'"'.  ( 7 )  
Thus if zo is one fixed point of R, the periodic cycle sequence 

( R ' ) Y Z O )  = { z *  9 . . . 3 z,} ( 1  S j S  m )  (8) 
is a fixed point set of R. Now if we consider ( 3 a )  for a large rescaling factor ( n ' < <  n )  
we expect ( 3 b )  to possess a large number of fixed points; the cycle points may be 
contained in both the Julia sets of R and R'. This is simply the observation that for 
an increasingly large rescaling ( 3 a )  requires that each zero of the reduced system 
corresponds to an increasingly large number of zeros in the original system. The 
implication here is that for n'<< n, where the Yang-Lee zeros lie on a simple curve, 
say, the fixed points of R above may provide a good enough view of the limiting 
distribution as a whole. The zero-field one-dimensional Ising model offers a trivial 
example of this, where for b' = 2 ( 3  b )  is simply 

( v  = tanh K )  ( 9 )  y '  = y2 

but for a rescaling of b = 2" 

y' = y2" 

which in its fixed points locates 2m - 1 points on the limiting locus / V I  = 1. 
Our proposition in the first instance therefore is that the fixed points of R with a 

large b in the complex field will probably be clustered close to the limiting distribution, 
and of course these are easy to find compared with trying to construct the whole Julia 
set. However, constructing an R, (= R )  with a large rescaling factor is of course a very 
difficult thing to do, and to test these ideas we have used the finite-size scaling scheme 
of Nightingale (1982) (for a review see Barber 1983) in conjunction with the exact 
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solution of Onsager (1944) for the two-dimensional Ising model for both the isotropic 
and anisotropic cases. Here the finite-size scaling transformation generates R,  in terms 
of the correlation lengths (real variables) of two semi-infinite strips of the quadratic 
lattice. Thus if the two strips have widths n and m and h , ( n ,  z )  and A2(n, z) are the 
two eigenvalues of the transfer matrix which are greatest in modulus (z  real), then R, 
is given by 

18'1" = 181" ( b  = m/n) ( 1 1 )  

where 

The eigenvalues A l ( z ,  n )  and h 2 ( z ,  n )  are given by 

where 

7T 
cosh y, = z + z-' -cos j -  

n 
z = sinh 2 K  (isotropic case) 

(14) 

Our proposal is to formally extend (11) into the complex field, but to regard ( 1 1 )  
as a map from z to z' and to attempt inverse iteration would be both a formidable 
and dangerous undertaking, so following the above discussion we have in the first 
instance taken n m sequences for large rescaling factors b and computed a sample of 
the fixed points of ( 1 1 )  in the sinh 2 K  plane where the Yang-Lee distribution is on 
the unit circle (Wood 1985a). The danger alluded to above refers to the care needed 
in identifying the appropriate branches of the functions eYj, each of which is an algebraic 
function of cosh y, with two branches. The results of these calculations are shown in 
figures 1 and 2 for b = 30 and 40. These pictures, however, are only a small projection 
of the overall view (shown below) obtained from ( 1  1 ) .  They merely show that a small 
but systematic sampling of the transformations yield fixed point sets which are indeed 
clustered and very close to the exact locus. The fixed points shown in figures 1 and 
2 are joined with line segments only to highlight their distribution relative to the unit 
circle. 

Insofar as the Ising model is a suitable testing ground the outcome of the calculations 
in figures 1 and 2 is very satisfactory. The points in these figures are obtained with 
R, in the form ( l l ) ,  but a full extension to the complex field should really replace 
( 1  1 )  by the form 

(80" = 8". (15 )  
The use of the modulus sign in ( 1  1 )  originates from identifying the finite-size scaling 
transformation physically as a rescaling of the correlation range in the critical point 
region. In fact, even for z real, h2 can be complex (or real negative), and it will 
probably be so if the low temperature phase or ground state is translationally symmetric 
with respect to a unit cell of the lattice any larger than a single site. Thus, to include 
the antiferromagnetic region (real variables) for the Ising model case here (where h2 
would be negative), the full extension to the complex field (15) is required. Again 
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(6) 
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Figure 1. Samples of the fixed points of equatidn ( 1 1 )  in the sinh 2 K  plane for sequences 
n, m in which b = 30; the exact locus is the circular arc 1st = 1.  (m, n )  = ((I) 60, 2; ( b )  90, 
3; ( c )  120, 4; ( d )  150, 5 .  

using a fairly large rescaling factor of 10 and 20 and now looking with a much higher 
resolution at the two equations (11) and 

n arg 6’=  m arg 6 (16) 

we find that the two fixed point sets of (11) and (16) are indeed highly concentrated 
close to the exact locus. The two examples are shown in figures 3 and 4 but now in 
terms of the variable z = e-2K where the distribution on the two circles is 

z = +Jz ei+ (0s 4 27r) (17) 

shown by the continuous line (Fisher 1965, Wood 1985a). The true fixed point set to 
(15) is of course the intersection of the two fixed point sets of (1 1) and (16), but this 
is too awkward to display separately. As it is, each one of (11) and (16) is tied down 
very closely to the final distribution. The tracings of the graph plotting algorithm 
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lbl 

Figure 2. Samples of the fixed points of equation (1 1) in the sinh 2K plane in which b = 40; 
the exact locus is the circular arc Is1 = 1. (m, n )  = ( a )  80, 2; (b)  120, 3; ( c )  160,4; ( d )  200, 
5 .  

inside the two circles (17) which appear in figures 3(b) and 4(b) and again below in 
figures 7( b) and 8( b) are probably spurious. 

3. Small rescaling lengths 

The finite-size scaling transformation (1 1) has been remarkably successful both in its 
application to critical point behaviour (for a review see Barber 1983) and in the study 
of phase equilibrium generally (Wood and Osbaldestin (1983), Osbaldestin et a1 1985). 
Equation (1 1) restriced to real temperatures, typically with m = n + k, ( k  small), has 
produced many remarkable numerical estimates of critical parameters (see, for example, 
Wood and Goldfinch 1980, Baxter et a1 1980). Encouraged by the previous results we 
have considered the extension (15) of (1 1) for cases where m = n + 1. An extension 
of this type has some similarities to moving from a one-parameter space to a 
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-3 -2 -1 0 1 2 3  

\ I 

Figure 3. (a)  The fixed point sets of ( 1  1) and ( b )  of (16) shown for b = 20 ( m  = 40, n = 2), 
with a high resolution for the isotropic Ising model in the complex plane of z = exp(-2K). 
The exact locus is the intersecting circles shown by the continuous line. 

two-parameter space and it is useful to consider again the nature of (11) for real 
variables as it applies to the ferromagnetic and isotropic Ising model. At the critical 
temperature and for all temperatures below it, the two eigenvalues are identically equal 
in the thermodynamic limit n + 03. Such limiting behaviour is closely approximated 
by (1 1) for finite n and m (as illustrated by Wood and Osbaldestin 1982) and is shown 
in figure 5. On including the magnetic field into (1 1) that portion of the curve in figure 
5 above the axis is still very tightly constrained in the real field-temperature plane, 
and is illustrated in figure 6 where the hairpin zero contour is the approximation to 
the coexistence curve 0 G T s T,, H = 0. 

The relevance of this feature in the complex field is substantial in that we anticipate, 
for a sequence of R, which are very faithful to the original Hamiltonian, the fixed 
points (1 1) and (16) could become asymptotically dense in what is the complex analogue 
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Figure 5. Plots of the function 4,,, = m In 18’1 - ( m  + 1) In /SI (see (11)) against the variable 
K = J /  kT for m = 2, 3 , 4 , 9 ,  19 and 29 in the case of the isotropic k ing  model (from Wood 
and Osbaldestin 1982). 

Figure 6. Contour plots of the function n In lS ’ I - (n+ l )  In IS/  (see (11)) in the real 
temperature ( K  = J / k T )  field ( H / J )  plane for the isotropic Ising model with n =4; the 
broken line is the coexistence curve (from Wood and Osbaldestin 1982). 

of the low temperature region. For the Ising model yo in (14) plays the crucial role 
of producing a transition in the thermodynamic limit, and in fact for the isotropic 
model the locus of Yang-Lee zeros is simply traced out by the contour yo = i4 in the 
complex plane (Wood 1985a) and in the general anisotropic case (horizontal : vertical 
interactions = K : K ’ )  

yo = 2K* - 2 K ’ =  i4 exp( -2 K *) = tanh K O S 4 S 2 . n  (18) 

traces out the boundaries of the limiting distribution. For large n where y1 - yo or 
y1 - - y o  across the boundary in (18), the complex ‘low’ temperature domain is the 
region where y ,  - yo and in this domain A ,  and A 2  of (13) are identically equal in the 
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thermodynamic limit. In this domain we expect that the zeros of the two functions 

A1 = (8'1" -IS(" (19a) 

A2 = n arg 8' - m arg S (19b) 

and 

will have characteristics illustrating this effect as n and m increase. With m = n + 1 
and in the limit n + 00, the Yang-Lee zeros would be the boundaries of domains where 
the fixed points are dense. 

The zero contours of Al and A2 in the complex z = e-2K plane are shown for n = 20 
and 30 in figures 7 and 8, where the system of spokes emerging from the rim of the 

(b) 

Figure 7. (a) The fixed point set of (11) and (b)  of (16) for m =  n + l ,  n =20 in the 
z = exp(-2K) plane. The system of spokes resprsents the onset of a dense region bordering 
the locus of Yang-Lee zeros. 

3 

2 

1 

0 

-1 

-2 

- 2 - 1  0 1 2  3 
,-a 

-3 

3 

2 

1 

0 

-1 

-2 

-3 -2 -1 0 1 2 3  
(bl 1111 

Figure 8. (a) The fixed point set of (1 1) and ( b )  of (16) for m = n + 1, n = 30 in the z 
= exp(-2K) plane. The system of spokes represent the onset of a dense region bordering 
the locus of Yang-Lee zeros. 
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I 

Figure 9. The Yang-Lee distribution (shown Figure 10. The boundary curves of the Yang-Lee 
shaded), for the anisotropic Ising model with distribution with K :  K '  = 1 : 2 in (18) in the complex 
K :  K ' =  1 : 2 in the complex plane of z = exp(-2K) 
(from Wood 1985a). 

plane of z = exp(-2K) (from Wood 1985a). 

two intersecting circles (note that here the intersection has emerged very clearly (cf 
figures 1 and 2)) represent the onset of a dense set obtained in the limit n + a. 

We have also included the anisotropic case of the two-dimensional Ising model in 
these calculations. Here (18) traces out the boundaries of the Yang-Lee distribution 
for a general parametrisation K :  K ' ;  and in the case where K : K ' =  1 : 2 the Yang-Lee 
zeros fall in the shaded regions of figure 9 which have the four boundary curves shown 
in figure 10. The scaling transformation calculations for n = 10 and 20 of (11) are 

0 

-1 -1 

-2 -2 

-3 -2 -1 0 1 2 3  -3 - 2 - 1  0 1 2  3 
(a) ( b) 

Figure 11. The same as figure 7 ( a )  for the anisotropic Ising model with K : K ' =  1 : 2  and 
n = 10 and 20 where (11) has been adapted to produce only the dumb-bells in figure 10. 
( a )  for n = 10 and ( b )  for n =20. 
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Figure 12. ( 0 )  and ( b )  are respectively the fixed point sets of (11) for the anisotropic Ising 
model with K : K ' = 1 : 2 a n d  K : K ' = 2 : 1 ,  n = 4 0 , i n t h e p l a n e o f  z=exp(-ZK).  

-3 -2 -1 0 1 2 3  
(a) 

-3 -2 -1 0 1 2 3  
(bl 

I 
-3 -2 -1 0 7 2 Figure 13. The loci generated by (21) using single 

systems with ( a )  n = 20, ( b )  n = 30 and (c) n = 50. (cl 
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I I I 

1 I I 
-3 - 2 1 0 1 2  

(d) 

Figure 14. The loci of (21) for the anisotropic model K : KO= 1 : 2; ( a )  n = 10 and ( b )  
n = 20 for the loci which approximate the two squashed circles in the boundaries shown 
in figure 10, and ( c )  n = 10 and ( d )  n = 20, which approximate the dumb-bell boundary 
curves shown in figure 10. 

shown in figure 11 and for n = 40 in figure 12. The system of two interacting dumb-bells 
is clearly discernable in figure 11, where in these calculations we have used (11) in a 
way which should only pick out the two dumb-bells in figure 10 ( K  : K‘= 1 : 2) and 
not the two ‘squashed’ circles ( K :  K ’ = 2 :  1) (see Wood 1985a). In figure 12(a), (11) 
has been used to pick out the dumb-bells and figure 12(b) the two squashed circles. 

4. Approximations using a single lattice system 

A naive approach to the Yang-Lee zeros is possible using only a single lattice system, 
whereas any technique using a renormalisation transformation R clearly requires at 
least two lattices. In the isotropic Ising model the locus of zeros is given by (18) which 
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is equivalently expressed in the form 

Hence a sequence on n of loci generated by 

M n ,  K ) I A , ( n ,  K)I = 1 (21) 
should converge onto the limiting distribution which again should appear as the 
boundary of a dense set. The orbits traced out by (21) with n = 20, 30 and 50 are 
shown in figure 13 and corresponding orbits for the anisotropic model with K : K '  = 1 : 2 
are shown for n = 10 and 20 in figure 14. Here, both the boundaries generated by 
K : K ' =  1 : 2 (the dumb-bells) and K ' :  K = 1 : 2 (the squashed circles, see Wood 1985a) 
are shown. The absence of those portions of the two circles (17) inside the boundaries 
approximated in figure 13 is merely an artefact produced by our selection of the 
branches of the two functions eYo and e'" of (14) in performing the numerical calcula- 
tions. In the cosh yo and cosh yn planes both eYo and eyn have a cut along the real 
axis line segment -1 1 which in the z plane transforms into the whole of 
the circles (17) exactly. In our calculations we have selected a particular pair of 
branches; alternative choices would produce either the interior arcs themselves or 
combinations of these and the boundaries shown here. A similar problem of branch 
selection arises even in the original finite-size scaling calculations of Nightingale (1976) 
for real temperatures where yo crosses the branch point at eYO= 1. 

cosh yo,n 
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